Senin, 06 Oktober 2025

SEM PLS with moderation using seminr package

 

semplscorp

semplscorp

SEM PLS

Structural Equation Model Partial Least Square is a sophistication model to predict the relation of the some variable. Sometimes we are difficult to predict the relation of the

The Corporate Reputaion Model

we use corporate mode data corporate, but.. in my rstudio software i am difficult to find it. Fortunately, my seminr package has corporate_rep_data. the variable of the data similiar so i use it to learn about SEM PLS. According Chidung(n.d), the Semnir package help us to analyze data with SEM PLS mode. First, we should to create measurement model. use construct command to some variable from corporate_rep_data that i got it from the package (seminr). if you have from seminr package, you can use corporate data set that is not different to mine.

# Create measurement model: 
library (seminr)

corp_mm <- constructs(
  reflective("COMP", multi_items("comp_", 1:3)),
 reflective("LIKE", multi_items("like_", 1:3)),
  reflective("CUSA", single_item("cusa")),
  reflective("CUSL", multi_items("cusl_", 1:3)))
corp_rep_sm <- relationships(
  paths(from = c("COMP", "LIKE"), to = c("CUSA", "CUSL")),
  paths(from = c("CUSA"), to = c("CUSL")))

you can make model after it using the model.

my_model <- estimate_pls(data = corp_rep_data2, measurement_model = corp_mm, structural_model = corp_rep_sm, inner_weights = path_weighting, missing = mean_replacement,missing_value = "-99")
Generating the seminr model
All 347 observations are valid.
summary_model <- summary(my_model)

After creating model we can see the result of model by using this

summary_model$loadings
        COMP  LIKE  CUSA  CUSL
comp_1 0.893 0.000 0.000 0.000
comp_2 0.619 0.000 0.000 0.000
comp_3 0.645 0.000 0.000 0.000
like_1 0.000 0.864 0.000 0.000
like_2 0.000 0.799 0.000 0.000
like_3 0.000 0.733 0.000 0.000
cusa   0.000 0.000 1.000 0.000
cusl_1 0.000 0.000 0.000 0.798
cusl_2 0.000 0.000 0.000 0.879
cusl_3 0.000 0.000 0.000 0.750
summary_model$reliability
     alpha  rhoC   AVE  rhoA
COMP 0.773 0.768 0.532 0.799
LIKE 0.841 0.842 0.641 0.847
CUSA 1.000 1.000 1.000 1.000
CUSL 0.849 0.852 0.658 0.857

Alpha, rhoC, and rhoA should exceed 0.7 while AVE should exceed 0.5
plot(summary_model$reliability)

summary_model$validity$cross_loadings
        COMP  LIKE  CUSA  CUSL
comp_1 0.841 0.638 0.464 0.456
comp_2 0.793 0.475 0.321 0.317
comp_3 0.844 0.528 0.325 0.340
like_1 0.644 0.885 0.542 0.579
like_2 0.536 0.885 0.463 0.568
like_3 0.580 0.842 0.426 0.520
cusa   0.461 0.551 1.000 0.706
cusl_1 0.462 0.604 0.574 0.853
cusl_2 0.418 0.603 0.673 0.925
cusl_3 0.327 0.467 0.608 0.851
summary_model$validity$fl_criteria
      COMP  LIKE  CUSA  CUSL
COMP 0.729     .     .     .
LIKE 0.675 0.800     .     .
CUSA 0.461 0.551 1.000     .
CUSL 0.461 0.639 0.706 0.811

FL Criteria table reports square root of AVE on the diagonal and construct correlations on the lower triangle.
summary_model$validity$htmt
      COMP  LIKE  CUSA CUSL
COMP     .     .     .    .
LIKE 0.817     .     .    .
CUSA 0.507 0.598     .    .
CUSL 0.551 0.752 0.765    .

Then, we draw the plot of the models. with the plot, we know the relation between variable.

plot(my_model)

After see the model you can use the bootstrap model. Bootstrap is a method to know the suit model of the pls model that we have examine before. it is a procedural step in sem pls analysis.

# Store the summary of the bootstrapped model: 
boot_model_htmt <- bootstrap_model(seminr_model = my_model, nboot = 1000)
Bootstrapping model using seminr...
SEMinR Model successfully bootstrapped
sum_boot_model_htmt <- summary(boot_model_htmt, alpha = 0.10)
sum_boot_model_htmt$bootstrapped_HTMT
               Original Est. Bootstrap Mean Bootstrap SD T Stat. 5% CI 95% CI
COMP  ->  LIKE         0.817          0.816        0.035  23.195 0.758  0.870
COMP  ->  CUSA         0.507          0.507        0.054   9.442 0.414  0.590
COMP  ->  CUSL         0.551          0.550        0.056   9.799 0.459  0.645
LIKE  ->  CUSA         0.598          0.597        0.040  14.977 0.527  0.658
LIKE  ->  CUSL         0.752          0.752        0.035  21.754 0.692  0.807
CUSA  ->  CUSL         0.765          0.766        0.032  23.759 0.713  0.817

After the bootstrap we can see the reliabity such as alpha, rhoc, AVE, and Rhoa. The reliability model must more than 0,5.

We also look the HTMT test show the result is good. The upper 95% CI shows that the value is not more or equal than the 0,9.

HTMT Test

After the bootstrap we also run the HTMT Test to make sure the model good. all the 95% CI Value is not more than 0,9, meaning the model is good.

Tidak ada komentar:

Posting Komentar

SEM PLS with moderation using seminr package

  semplscorp semplscorp SEM PLS Structural Equation Model Partial Le...